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In this Workbook you will learn about the basic building blocks of trigonometry. You will
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Right-angled
Triangles

�
�

�
�4.1

Introduction
Right-angled triangles (that is triangles where one of the angles is 90◦) are the easiest topic for
introducing trigonometry. Since the sum of the three angles in a triangle is 180◦ it follows that in
a right-angled triangle there are no obtuse angles (i.e. angles greater than 90◦). In this Section we
study many of the properties associated with right-angled triangles.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have a basic knowledge of the geometry of
triangles

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• define trigonometric functions both in
right-angled triangles and more generally

• express angles in degrees

• calculate all the angles and sides in any
right-angled triangle given certain information
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1. Right-angled triangles
Look at Figure 1 which could, for example, be a profile of a hill with a constant gradient.

A C1 C2

B1

B2

A

Figure 1

The two right-angled triangles AB1C1 and AB2C2 are similar (because the three angles of triangle
AB1C1 are equal to the equivalent 3 angles of triangle AB2C2). From the basic properties of similar
triangles corresponding sides have the same ratio. Thus, for example,

B1C1

AB1

=
B2C2

AB2

and
AC1

AB1

=
AC2

AB2

(1)

The values of the two ratios (1) will clearly depend on the angle A of inclination. These ratios are
called the sine and cosine of the angle A, these being abbreviated to sin A and cos A.

Key Point 1

A C

B

A

B

sin A =
BC

AB
cos A =

AC

AB

Figure 2

AC is the side adjacent to angle A.

BC is the side opposite to angle A.

AB is the hypotenuse of the triangle (the longest side).

Task

Referring again to Figure 2 in Key Point 1, write down the ratios which give sin B
and cos B.

Your solution

Answer

sin B =
AC

AB
cos B =

BC

AB
.

Note that sin B = cos A = cos(90◦ −B) and cos B = sin A = sin(90◦ −B)
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A third result of importance from Figure 1 is

B1C1

AC1

=
B2C2

AC2

(2)

These ratios is referred to as the tangent of the angle at A, written tan A.

Key Point 2

A C

B

A

B

sin A =
BC

AB
cos A =

AC

AB

Figure 3

tan A =
BC

AC
=

length of opposite side

length of adjacent side

For any right-angled triangle the values of sine, cosine and tangent are given in Key Point 3.

Key Point 3

A C

B

A

B

sin A =
BC

AB
cos A =

AC

AB

Figure 4
We can write, therefore, for any right-angled triangle containing an angle θ (not the right-angle)

sin θ =
length of side opposite angle θ

length of hypotenuse
=

Opp

Hyp

cos θ =
length of side adjacent to angle θ

length of hypotenuse
=

Adj

Hyp

tan θ =
length of side opposite angle θ

length of side adjacent to angle θ
=

Opp

Adj

These are sometimes memorised as SOH, CAH and TOA respectively.

These three ratios are called trigonometric ratios.
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Task

Write tan θ in terms of sin θ and cos θ.

Your solution

Answer

tan θ =
Opp

Adj
=

Opp

Adj
.
Hyp

Hyp
=

Opp

Hyp
.
Hyp

Adj
=

Opp

Hyp

/ Adj

Hyp
i.e. tan θ =

sin θ

cos θ

Key Point 4

Pythagoras’ Theorem

a

bca2 + b2 = c2

Figure 5

Example 1
Use the isosceles triangle in Figure 6 to obtain the sine, cosine and tangent of 45◦.

A C

45

B

45

x

x

Figure 6

Solution

By Pythagoras’ theorem (AB)2 = x2 + x2 = 2x2 so AB = x
√

2

Hence sin 45◦ =
BC

AB
=

x

x
√

2
=

1√
2

cos 45◦ =
AC

AB
=

1√
2

tan 45◦ =
BC

AC
=

x

x
= 1

HELM (2008):
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Engineering Example 1

Noise reduction by sound barriers

Introduction

Audible sound has much longer wavelengths than light. Consequently, sound travelling in the atmo-
sphere is able to bend around obstacles even when these obstacles cause sharp shadows for light.
This is the result of the wave phenomenon known as diffraction. It can be observed also with water
waves at the ends of breakwaters. The extent to which waves bend around obstacles depends upon
the wavelength and the source-receiver geometry. So the efficacy of purpose built noise barriers, such
as to be found alongside motorways in urban and suburban areas, depends on the frequencies in the
sound and the locations of the source and receiver (nearest noise-affected person or dwelling) relative
to the barrier. Specifically, the barrier performance depends on the difference in the lengths of the
hypothetical ray paths passing from source to receiver either directly or via the top of the barrier (see
Figure 7).

hs
s

S
U

H
W

T

r

V hr

R

barrier

source

receiver

Figure 7

Problem in words

Find the difference in the path lengths from source to receiver either directly or via the top of the
barrier in terms of

(i) the source and receiver heights,
(ii) the horizontal distances from source and receiver to the barrier and
(iii) the height of the barrier.

Calculate the path length difference for a 1 m high source, 3 m from a 3 m high barrier when the
receiver is 30 m on the other side of the barrier and at a height of 1 m.

Mathematical statement of the problem

Find ST + TR− SR in terms of hs, hr, s, r and H.

Calculate this quantity for hs = 1, s = 3, H = 3, r = 30 and hr = 1.

6 HELM (2008):
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Mathematical analysis

Note the labels V, U,W on points that are useful for the analysis. Note that the length of RV =
hr − hs and that the horizontal separation between S and R is r + s. In the right-angled triangle
SRV, Pythagoras’ theorem gives

(SR)2 = (r + s)2 + (hr − hs)2

So

SR =
√

(r + s)2 + (hr − hs)2 (3)

Note that the length of TU = H − hs and the length of TW = H − hr. In the right-angled triangle
STU,

(ST )2 = s2 + (H − hs)2

In the right-angled triangle TWR,

(TR)2 = r2 + (H − hr)2

So

ST + TR =
√

s2 + (H − hs)2 +
√

r2 + (H − hr)2 (4)

So using (3) and (4)

ST + TR− SR =
√

s2 + (H − hs)2 +
√

r2 + (H − hr)2 −
√

(r + s)2 + (hr − hs)2.

For hs = 1, s = 3, H = 3, r = 30 and hr = 1,

ST + TR− SR =
√

32 + (3− 1)2 +
√

302 + (3− 1)2 −
√

(30 + 3)2 + (1− 1)2

=
√

13 +
√

904− 33

= 0.672

So the path length difference is 0.672 m.

Interpretation

Note that, for equal source and receiver heights, the further either receiver or source is from the
barrier, the smaller the path length difference. Moreover if source and receiver are at the same height
as the barrier, the path length difference is zero. In fact diffraction by the barrier still gives some
sound reduction for this case. The smaller the path length difference, the more accurately it has to
be calculated as part of predicting the barriers noise reduction.

HELM (2008):
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Engineering Example 2

Horizon distance

Problem in words

Looking from a height of 2 m above sea level, how far away is the horizon? State any assumptions
made.

Mathematical statement of the problem

Assume that the Earth is a sphere. Find the length D of the tangent to the Earth’s sphere from the
observation point O.

R

h

D

R
O

Figure 8: The Earth’s sphere and the tangent from the observation point O

Mathematical analysis

Using Pythagoras’ theorem in the triangle shown in Figure 8,

(R + h)2 = D2 + R2

Hence

R2 + 2Rh + h2 = D2 + R2 → h(2R + h) = D2 → D =
√

h(2R + h)

If R = 6.373× 106 m, then the variation of D with h is shown in Figure 9.

0 2 4 6 8 10

5000

10000

15000

Height h

Horizon D

(m)

(m)

Figure 9
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At an observation height of 2 m, the formula predicts that the horizon is just over 5 km away. In
fact the variation of optical refractive index with height in the atmosphere means that the horizon is
approximately 9% greater than this.

Task

Using the triangle ABC in Figure 10 which can be regarded as one half of the
equilateral triangle ABD, calculate sin, cos, tan for the angles 30◦ and 60◦.

A C

B

x

D

30◦

60◦

x

2

Figure 10

Your solution

Answer

By Pythagoras’ theorem: (BC)2 = (AB)2 − (AC)2 = x2 − x2

4
=

3x2

4
so BC = x

√
3

2

Hence sin 60◦ =
BC

AB
=

x
√

3
2

x
=

√
3

2
sin 30◦ =

AC

AB
=

x
2

x
=

1

2
cos 60◦ =

AC

AB
=

1

2

cos 30◦ =
BC

AB
=

x
√

3
2

x
=

√
3

2
tan 60◦ =

√
3

2
1
2

=
√

3 tan 30◦ =
1
2√
3

2

=
1√
3

Values of sin θ, cos θ and tan θ can of course be obtained by calculator. When entering the angle
in degrees ( e.g. 30◦) the calculator must be in degree mode. (Typically this is ensured by pressing
the DRG button until ‘DEG’ is shown on the display). The keystrokes for sin 30◦ are usually simply
sin 30 or, on some calculators, 30 sin perhaps followed by = .

Task

(a) Use your calculator to check the values of sin 45◦, cos 30◦ and tan 60◦ obtained
in the previous Task.

(b) Also obtain sin 3.2◦, cos 86.8◦, tan 28◦15′. (′ denotes a minute =
1

60

◦
)

HELM (2008):
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Your solution

(a)

(b)

Answer
(a) 0.7071, 0.8660, 1.7321 to 4 d.p.

(b) sin 3.2◦ = cos 86.8◦ = 0.0558 to 4 d.p., tan 28◦15′ = tan 28.25◦ = 0.5373 to 4 d.p.

Inverse trigonometric functions (a first look)
Consider, by way of example, a right-angled triangle with sides 3, 4 and 5, see Figure 11.

A

B

C

3

4

5

A

B

Figure 11

Suppose we wish to find the angles at A and B. Clearly sin A =
3

5
, cos A =

4

5
, tan A =

3

4
so we

need to solve one of the above three equations to find A.

Using sin A =
3

5
we write A = sin−1

(
3

5

)
(read as ‘A is the inverse sine of

3

5
’)

The value of A can be obtained by calculator using the ‘sin−1’ button (often a second function to

the sin function and accessed using a SHIFT or INV or SECOND FUNCTION key).

Thus to obtain sin−1

(
3

5

)
we might use the following keystrokes:

INV SIN 0.6 = or 3 ÷ 5 INV SIN =

We find sin−1 3

5
= 36.87◦ (to 4 significant figures).

Key Point 5

Inverse Trigonometric Functions

sin θ = x implies θ = sin−1 x
cos θ = y implies θ = cos−1 y
tan θ = z implies θ = tan−1 z

(The alternative notations arcsin, arccos, arctan are sometimes used for these inverse functions.)

10 HELM (2008):
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Task

Check the values of the angles at A and B in Figure 11 above using the cos−1

functions on your calculator. Give your answers in degrees to 2 d.p.

Your solution

Answer

A = cos−1 4

5
= 36.87◦ B = cos−1 3

5
= 53.13◦

Task

Check the values of the angles at A and B in Figure 11 above using the tan−1

functions on your calculator. Give your answers in degrees to 2 d.p.

Your solution

Answer

A = tan−1 3

4
= 36.87◦ B = tan−1 4

3
= 53.13◦

You should note carefully that sin−1 x does not mean
1

sin x
.

Indeed the function
1

sin x
has a special name – the cosecant of x, written cosec x. So

cosec x ≡ 1

sin x
(the cosecant function).

Similarly

sec x ≡ 1

cos x
(the secant function)

cot x ≡ 1

tan x
(the cotangent function).

HELM (2008):
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Task

Use your calculator to obtain to 3 d.p. cosec 38.5◦, sec 22.6◦, cot 88.32◦ (Use
the sin, cos or tan buttons unless your calculator has specific buttons.)

Your solution

Answer

cosec 38.5◦ =
1

sin 38.5◦
= 1.606 sec 22.6◦ =

1

cos 22.6◦
= 1.083

cot 88.32◦ =
1

tan 88.32◦
= 0.029

2. Solving right-angled triangles
Solving right-angled triangles means obtaining the values of all the angles and all the sides of a given
right-angled triangle using the trigonometric functions (and, if necessary, the inverse trigonometric
functions) and perhaps Pythagoras’ theorem.
There are three cases to be considered:

Case 1 Given the hypotenuse and an angle

We use sin or cos as appropriate:

x

y
h

θA

B

C

(a) 

Figure 12

Assuming h and θ in Figure 12 are given then

cos θ =
x

h
which gives x = h cos θ

from which x can be calculated.

Also

sin θ =
y

h
so y = h sin θ which enables us to calculate y.

Clearly the third angle of this triangle (at B) is 90◦ − θ.

12 HELM (2008):
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Case 2 Given a side other than the hypotenuse and an angle.

We use tan:

(a) If x and θ are known then, in Figure 12, tan θ =
y

x
so y = x tan θ

which enables us to calculate y.

(b) If y and θ are known then tan θ =
y

x
gives x =

y

tan θ
from which x can be calculated.

Then the hypotenuse can be calculated using Pythagoras’ theorem: h =
√

x2 + y2

Case 3 Given two of the sides

We use tan−1 or sin−1 or cos−1:

(a)

x

y

θ

tan θ =
y

x
so θ = tan−1

(y

x

)

Figure 13
(b)

y
h

θ

sin θ =
y

h
so θ = sin−1

(y

h

)

Figure 14

(c)

x

h

θ

cos θ =
x

h
so θ = cos−1

(x

h

)

Figure 15

Note: since two sides are given we can use Pythagoras’ theorem to obtain the length of the third
side at the outset.

HELM (2008):
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Engineering Example 3

Vintage car brake pedal mechanism

Introduction

Figure 16 shows the structure and some dimensions of a vintage car brake pedal arrangement as
far as the brake cable. The moment of a force about a point is the product of the force and the
perpendicular distance from the point to the line of action of the force. The pedal is pivoted about
the point A. The moments about A must be equal as the pedal is stationary.

Problem in words

If the driver supplies a force of 900 N , to act at point B, calculate the force (F ) in the cable.

Mathematical statement of problem

The perpendicular distance from the line of action of the force provided by the driver to the pivot
point A is denoted by x1 and the perpendicular distance from the line of action of force in the cable
to the pivot point A is denoted by x2. Use trigonometry to relate x1 and x2 to the given dimensions.
Calculate clockwise and anticlockwise moments about the pivot and set them equal.

15◦

x2

x1

40◦
F

B

A

cable

75 mm

210 mm

900 N

40◦

Figure 16: Structure and dimensions of vintage car brake pedal arrangement

Mathematical Analysis

The distance x1 is found by considering the right-angled triangle shown in Figure 17 and using the
definition of cosine.

x1

210 mm

40◦
cos(40◦) =

x1

0.210
x1 = 161 mm.hence

Figure 17

14 HELM (2008):
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The distance x2 is found by considering the right-angled triangle shown in Figure 18.

x2
75 mm 15◦ cos(15◦) =

x2

0.075
x2 = 72 mm.hence

Figure 18

Equating moments about A:

900x1 = Fx2 so F = 2013 N.

Interpretation

This means that the force exerted by the cable is 2013 N in the direction of the cable. This force is
more than twice that applied by the driver. In fact, whatever the force applied at the pedal the force
in the cable will be more than twice that force. The pedal structure is an example of a lever system
that offers a mechanical gain.

Task

Obtain all the angles and the remaining side for the triangle shown:

A

C5

c

B

4

Your solution

Answer

This is Case 3. To obtain the angle at B we use tan B =
4

5
so B = tan−1(0.8) = 38.66◦.

Then the angle at A is 180◦ − (90◦ − 38.66◦) = 51.34◦.

By Pythagoras’ theorem c =
√

42 + 52 =
√

41 ≈ 6.40.

HELM (2008):
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Task

Obtain the remaining sides and angles for the triangle shown.

31◦40′

a

b
15

A

BC

Your solution

Answer

This is Case 1. Since 31◦40′ = 31.67◦ then cos 31.67◦ =
a

15
so a = 15 cos 31.67◦ = 12.77.

The angle at A is 180◦ − (90 + 31.67◦) = 58.33◦.

Finally sin 31.67◦ =
b

15
. .. b = 15 sin 31.67◦ = 7.85.

(Alternatively, of course, Pythagoras’ theorem could be used to calculate the length b.)

Task

Obtain the remaining sides and angles of the following triangle.

34◦20′

a

c
8

A

BC

Your solution

Answer

This is Case 2.

Here tan 34.33◦ =
8

a
so a =

8

tan 34.33◦
= 11.7

Also c =
√

82 + 11.72 = 14.18 and the angle at A is 180◦ − (90◦ + 34.33◦) = 55.67◦.

16 HELM (2008):
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Exercises

1. Obtain cosec θ, sec θ, cot θ, θ in the following right-angled triangle.

8

A

BC θ15

2. Write down sin θ, cos θ, tan θ, cosec θ for each of the following triangles:

A

BC θ

2 5

A

BC θx

y(a) (b)

3. If θ is an acute angle such that sin θ = 2/7 obtain, without use of a calculator, cos θ and tan θ.

4. Use your calculator to obtain the acute angles θ satisfying

(a) sin θ = 0.5260, (b) tan θ = 2.4, (c) cos θ = 0.2

5. Solve the right-angled triangle shown:

A

BC

b c

β10

α = 57.5◦
α

6. A surveyor measures the angle of elevation between the top of a mountain and ground level at
two different points. The results are shown in the following figure. Use trigonometry to obtain
the distance z (which cannot be measured) and then obtain the height h of the mountain.

37◦ 41◦

0.5 km z

h

7. As shown below two tracking stations S1 and S2 sight a weather balloon (WB) between them
at elevation angles α and β respectively.

S1 S2

WB

α β

h

P
c

Show that the height h of the balloon is given by h =
c

cot α + cot β

8. A vehicle entered in a ‘soap box derby’ rolls down a hill as shown in the figure. Find the total
distance (d1 + d2) that the soap box travels.

FINISH

START

15◦

d2

d1

28◦
200 metres

HELM (2008):
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Answers

1. h =
√

152 + 82 =17, cosec θ=
1

sin θ
=

17

8
sec θ=

1

cos θ
=

17

15
cot θ=

1

tan θ
=

15

8

θ = sin−1 8

17
(for example) . .. θ = 28.07◦

2. (a) sin θ =
2

5
cos θ =

√
21

5
tan θ =

2
√

21

21
cosec θ =

5

2

(b) sin θ =
y√

x2 + y2
cos θ =

x√
x2 + y2

tan θ =
y

x
cosec θ =

√
x2 + y2

y

3. Referring to the following diagram

A B

C

27

!
θ

! =
√

72 − 22 =
√

45 = 3
√

5

Hence cos θ =
3
√

5

7
tan θ =

2

3
√

5
=

2
√

5

15

4. (a) θ = sin−1 0.5260 = 31.73◦ (b) θ = tan−1 2.4 = 67.38◦ (c) θ = cos−1 0.2 = 78.46◦

5. β = 90− α = 32.5◦, b =
10

tan 57.5◦
' 6.37 c =

10

sin 57.5◦
' 11.86

6. tan 37◦ =
h

z + 0.5
tan 41◦ =

h

z
from which

h = (z + 0.5) tan 37◦ = z tan 41◦, so z tan 37◦ − z tan 41◦ = −0.5 tan 37◦

. .. z =
−0.5 tan 37◦

tan 37◦ − tan 41◦
' 3.2556 km, so h = z tan 41◦ = 3.2556 tan 41◦ ' 2.83 km

7. Since the required answer is in terms of cot α and cot β we proceed as follows:

Using x to denote the distance S1P cot α =
1

tan α
=

x

h
cot β =

1

tan β
=

c− x

h

Adding: cot α + cot β =
x

h
+

c− x

h
=

c

h
. .. h =

c

cot α + cot β
as required.

8. From the smaller right-angled triangle d1 =
200

sin 28◦
= 426.0 m. The base of this triangle

then has length ` = 426 cos 28◦ = 376.1 m

From the larger right-angled triangle the straight-line distance from START to FINISH is
200

sin 15◦
= 772.7 m. Then, using Pythagoras’ theorem (d2 + `) =

√
772.72 − 2002 = 746.4 m

from which d2 = 370.3 m . .. d1 + d2 = 796.3 m

18 HELM (2008):
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Trigonometric
Functions

�
�

�
�4.2

Introduction
Our discussion so far has been limited to right-angled triangles where, apart from the right-angle
itself, all angles are necessarily less than 90◦. We now extend the definitions of the trigonometric
functions to any size of angle, which greatly broadens the range of applications of trigonometry.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have a basic knowledge of the geometry of
triangles

'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• express angles in radians

• define trigonometric functions generally

• sketch the graphs of the three main
trigonometric functions: sin, cos, tan

HELM (2008):
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1. Trigonometric functions for any size angle

The radian
First we introduce an alternative to measuring angles in degrees. Look at the circle shown in Figure
19(a). It has radius r and we have shown an arc AB of length ` (measured in the same units as r.)
As you can see the arc subtends an angle θ at the centre O of the circle.

r

�

A B
O

θ
180

�

O

B

A

(a)         (b)

◦

Figure 19
The angle θ in radians is defined as

θ =
length of arc AB

radius
=

`

r

So, for example, if r = 10 cm, ` = 20 cm, the angle θ would be
20

10
= 2 radians.

The relation between the value of an angle in radians and its value in degrees is readily obtained
as follows. Referring to Figure 19(b) imagine that the arc AB extends to cover half the complete
perimeter of the circle. The arc length is now πr (half the circumference of the circle) so the angle
θ subtended by AB is now

θ =
πr

r
= π radians

But clearly this angle is 180◦. Thus π radians is the same as 180◦.

Note conversely that since π radians = 180◦ then 1 radian =
180

π
degrees (about 57.3◦).

Key Point 6

180◦ = π radians

360◦ = 2π radians 1 radian =
180

π
degrees (≈ 57.3◦)

1◦ =
π

180
radians

x◦ =
πx

180
radians y radians =

180y

π
degrees

20 HELM (2008):
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Task

Write down the values in radians of 30◦, 45◦, 90◦, 135◦. (Leave your answers as
multiples of π.)

Your solution

Answer

30◦ = π × 30

180
=

π

6
radians 45◦ =

π

4
radians 90◦ =

π

2
radians 135◦ =

3π

4
radians

Task

Write in degrees the following angles given in radians

π

10
,

π

5
,

7π

10
,

23π

12

Your solution

Answer
π

10
rad =

180

π
× π

10
= 18◦

π

5
rad =

180

π
× π

5
= 36◦

7π

10
rad =

180

π
× 7π

10
= 126◦

23π

12
rad =

180

π
× 23π

12
= 345◦

Task

Put your calculator into radian mode (using the DRG button if necessary) for
this Task: Verify these facts by first converting the angles to radians:

sin 30◦ =
1

2
cos 45◦ =

1√
2

tan 60◦ =
√

3 (Use the π button to obtain π.)

Your solution

Answer

sin 30◦ = sin
(π

6

)
= 0.5, cos 45◦ = cos

(π

4

)
= 0.7071 =

1√
2
,

tan 60◦ = tan
(π

3

)
= 1.7320 =

√
3
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2. General definitions of trigonometric functions
We now define the trigonometric functions in a more general way than in terms of ratios of sides of
a right-angled triangle. To do this we consider a circle of unit radius whose centre is at the origin
of a Cartesian coordinate system and an arrow (or radius vector) OP from the centre to a point P
on the circumference of this circle. We are interested in the angle θ that the arrow makes with the
positive x-axis. See Figure 20.

r

O

P

θ

Figure 20

Imagine that the vector OP rotates in anti-clockwise direction. With this sense of rotation the
angle θ is taken as positive whereas a clockwise rotation is taken as negative. See examples in
Figure 21.

O

P

O

P

O

P

θ

θ

θ = 90 =
π

2
rad θ = 315 =

7π

4
rad θ = −45 = −π

4
rad

θ

◦ ◦ ◦

Figure 21

22 HELM (2008):
Workbook 4: Trigonometry



®

The sine and cosine of an angle
For 0 ≤ θ ≤ π

2
(called the first quadrant) we have the following situation with our unit radius circle.

See Figure 22.

R

Q x

y

O

P

Figure 22

The projection of OP along the positive x−axis is OQ. But, in the right-angled triangle OPQ

cos θ =
OQ

OP
or OQ = OP cos θ

and since OP has unit length cos θ = OQ (3)

Similarly in this right-angled triangle

sin θ =
PQ

OP
or PQ = OP sin θ

but PQ = OR and OP has unit length
so sin θ = OR (4)

Equation (3) tells us that we can interpret cos θ as the projection of OP along the positive xxx-axis
and sin θ as the projection of OP along the positive yyy-axis.
We shall use these interpretations as the definitions of sin θ and cos θ for any values of θ.

Key Point 7

For a radius vector OP of a circle of unit radius making an angle θ with the positive x−axis

cos θ = projection of OP along the positive x−axis

sin θ = projection of OP along the positive y−axis
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Sine and cosine in the four quadrants
First quadrant (0 ≤ θ ≤ 90◦)

O

PR

Q x

y

O

P
x

y

O

P

x

y

= 0◦
OQ = OP = 1
∴ cos 0◦ = 1

OR = 0

∴ sin 0◦ = 0

0 < < 90◦
cos = OQ

∴ 0 < cos < 1
sin = OR

∴ 0 < sinθ < 1

= 90◦
OQ = 0

∴ cos 90◦ = 0

OR = OP = 1
∴ sin 90◦ = 1

θ

θ

θ

θ

θ

θ

θ

Figure 23

It follows from Figure 23 that cos θ decreases from 1 to 0 as OP rotates from the horizontal position
to the vertical, i.e. as θ increases from 0◦ to 90◦.

sin θ = OR increases from 0 (when θ = 0) to 1 (when θ = 90◦).

Second quadrant (90◦ ≤ θ ≤ 180◦)

Referring to Figure 24, remember that it is the projections along the positive x and y axes that
are used to define cos θ and sin θ respectively. It follows that as θ increases from 90◦ to 180◦, cos θ
decreases from 0 to −1 and sin θ decreases from 1 to 0.

O

P
R

Q x

y

O

P

x

y

OP x

y

= 90◦
cos 90◦ = 0

sin 90◦ = 1

90◦ < < 180◦
cos = OQ (negative)
sin = OR (positive)

= 180◦
cos = OQ = OP = −1

sin = OR = 0

θ

θ
θ

θ

θ
θ

θ

θ

Figure 24

Considering for example an angle of 135◦, referring to Figure 25, by symmetry we have:

sin 135◦ = OR = sin 45◦ =
1√
2

cos 135◦ = OQ2 = −OQ1 = − cos 45◦ = − 1√
2

O x

y

1

P2 P1R

QQ2

45◦

Figure 25
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Key Point 8

sin(180− x) ≡ sin x and cos(180− x) ≡ − cos x

Task

Without using a calculator write down the values of

sin 120◦, sin 150◦, cos 120◦, cos 150◦, tan 120◦, tan 150◦.

(Note that tan θ ≡ sin θ

cos θ
for any value of θ.)

Your solution

Answer

sin 120◦ = sin(180− 60) = sin 60◦ =

√
3

2

sin 150◦ = sin(180− 30) = sin 30◦ =
1

2

cos 120◦ = − cos 60 = −1

2

cos 150◦ = − cos 30◦ = −
√

3

2

tan 120◦ =

√
3

2

−1
2

= −
√

3

tan 150◦ =
1
2

−
√

3
2

= − 1√
3
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Third quadrant (180◦ ≤ θ ≤ 270◦).

P

cos 180◦ = −1

sin 180◦ = 0

180◦ < θ < 270◦

cos θ = OQ (negative)

sin θ = OR (negative)

θ = 270◦

cos θ =?
sin θ =?

R

QP

P

θ

O O O

270
◦

Figure 26

Task

Using the projection definition write down the values of cos 270◦ and sin 270◦.

Your solution

Answer
cos 270◦ = 0 (OP has zero projection along the positive x−axis)

sin 270◦ = −1 (OP is directed along the negative axis)

Thus in the third quadrant, as θ increases from 180◦ to 270◦ so cos θ increases from −1 to 0 whereas
sin θ decreases from 0 to −1.

From the results of the last Task, with θ = 180◦ +x (see Figure 27) we obtain for all x the relations:

sin θ=sin(180 + x)=OR=−OR′=− sin x cos θ=cos(180 + x)=OQ=−OQ′=− cos x

Hence tan(180 + x)=
sin(180◦ + x)

cos(180◦ + x)
=

sin x

cos x
= + tan x for all x.

P R

Q
O

R′

Q′
x

x

Figure 27: θ = 180◦ + x

Key Point 9

sin(180 + x) ≡ − sin x cos(180 + x) ≡ − cos x tan(180 + x) ≡ + tan x
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Fourth quadrant (270◦ ≤ θ ≤ 360◦)

P
R

Q
O

θ = 270◦

cos θ =

270◦ < θ < 360◦

(alternatively −90◦ < θ <

sin θ = OR < 0

360◦

(results as for 0
◦
)0

sin θ = −1 cosθ = OQ <0

P

θ
θθ

0◦)

Figure 28

From Figure 28 the results in Key Point 10 should be clear.

Key Point 10

cos(−x) ≡ cos x sin(−x) ≡ − sin x tan(−x) ≡ − tan x.

Task

Write down (without using a calculator) the values of
sin 300◦, sin(−60◦), cos 330◦, cos(−30◦).

Describe the behaviour of cos θ and sin θ as θ increases from 270◦ to 360◦.

Your solution

Answer

sin 300◦ = − sin 60◦ = −
√

3/2 cos 330◦ = cos 30◦ =
√

3/2

sin(−60◦) = − sin 60◦ = −
√

3/2 cos(−30◦) = cos 30◦ =
√

3/2

cos θ increases from 0 to 1 and sin θ increases from −1 to 0 as θ increases from 270◦ to 360◦.
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Rotation beyond the fourth quadrant (360◦ < θ)

If the vector OP continues to rotate around the circle of unit radius then in the next complete
rotation θ increases from 360◦ to 720◦. However, a θ value of, say, 405◦ is indistinguishable from
one of 45◦ (just one extra complete revolution is involved).

So sin(405◦) = sin 45◦ =
1√
2

and cos(405◦) = cos 45◦ =
1√
2

In general sin(360◦ + x◦) = sin x◦, cos(360◦ + x◦) = cos x◦

Key Point 11

If n is any integer sin(x◦ + 360n◦) ≡ sin x◦ cos(x◦ + 360n◦) ≡ cos x◦

or, since 360◦ ≡ 2π radians, sin(x + 2nπ) ≡ sin x cos(x + 2nπ) = cos x

We say that the functions sin x and cos x are periodic with period (in radian measure) of 2π.

3. Graphs of trigonometric functions

Graphs of sin θθθ and cos θθθ

Since we have defined both sin θ and cos θ in terms of the projections of the radius vector OP of a
circle of unit radius it follows immediately that

−1 ≤ sin θ ≤ +1 and − 1 ≤ cos θ ≤ +1 for any value of θ.

We have discussed the behaviour of sin θ and cos θ in each of the four quadrants in the previous
subsection.
Using all the above results we can draw the graphs of these two trigonometric functions. See Figure
29. We have labelled the horizontal axis using radians and have shown two periods in each case.

sin

1

−2π

−

−π 0 π 2π

1

1

−2π

−

−π 0 π 2π

1
cos

π
2

θ θ

θ θ

Figure 29

We have extended the graphs to negative values of θ using the relations sin(−θ) = sin θ, cos(−θ) =
cos θ. Both graphs could be extended indefinitely to the left (θ → −∞) and right (θ → +∞).
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Task

(a) Using the graphs in Figure 29 and the fact that tan θ ≡ sin θ/ cos θ calculate
the values of tan 0, tan π, tan 2π.

(b) For what values of θ is tan θ undefined?

(c) State whether tan θ is positive or negative in each of the four quadrants.

Your solution

(a)

(b)

(c)

Answer

(a)

tan 0 =
sin 0

cos 0
=

0

1
= 0

tan π =
sin π

cos π
=

0

−1
= 0

tan 2π =
sin 2π

cos 2π
=

0

1
= 0

(b)

tan θ is not be defined when cos θ = 0 i.e. when θ = ± π

2
, ± 3π

2
,± 5π

2
, . . .

(c)

1st quadrant: tan θ =
sin θ

cos θ
=

+ve

+ve
= +ve

2nd quadrant: tan θ =
sin θ

cos θ
=

+ve

−ve
= −ve

3rd quadrant: tan θ =
sin θ

cos θ
=
−ve

−ve
= +ve

4th quadrant: tan θ =
sin θ

cos θ
=
−ve

+ve
= −ve
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The graph of tantantanθθθ
The graph of tan θ against θ, for −2π ≤ θ ≤ 2π is then as in Figure 30. Note that whereas sin θ
and cos θ have period 2π, tan θ has period π.

−2π

−

π 0 2π

π
2

π
2

−
π
2
3π

2
3−

tan

θ

θ

Figure 30

Task

On the following diagram showing the four quadrants mark which trigonometric
quantities cos, sin, tan, are positive in the four quadrants. One entry has been
made already.

Your solution

cos

Answer

cos

sin all

tan
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Engineering Example 4

Optical interference fringes due to a glass plate

Monochromatic light of intensity I0 propagates in air before impinging on a glass plate (see Figure
31). If a screen is placed beyond the plate then a pattern is observed including alternate light and
dark regions. These are interference fringes.

ψ

α

I0

Air

Glass plate

α Air

I

Figure 31: Geometry of a light ray transmitted and reflected through a glass plate

The intensity I of the light wave transmitted through the plate is given by

I =
I0|t|4

1 + |r|4 − 2|r|2 cos θ

where t and r are the complex transmission and reflection coefficients. The phase angle θ is the sum
of

(i) a phase proportional to the incidence angle α and

(ii) a fixed phase lag due to multiple reflections.

The problem is to establish the form of the intensity pattern (i.e. the minima and maxima charac-
teristics of interference fringes due to the plate), and deduce the shape and position θ of the fringes
captured by a screen beyond the plate.

Solution

The intensity of the optical wave outgoing from the glass plate is given by

I =
I0|t|4

1 + |r|4 − 2|r|2 cos θ
(1)

The light intensity depends solely on the variable θ as shown in equation (1), and the objective is
to find the values θ that will minimize and maximize I. The angle θ is introduced in equation (1)
through the function cos θ in the denominator. We consider first the maxima of I.
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Solution (contd.)

Light intensity maxima
I is maximum when the denominator is minimum. This condition is obtained when the factor
2|r| cos θ is maximum due to the minus sign in the denominator. As stated in Section 4.2, the
maxima of 2|r| cos θ occur when cos θ = +1. Values of cos θ = +1 correspond to θ = 2nπ where
n = . . . − 2,−1, 0, 1, 2, . . . (see Section 4.5) and θ is measured in radians. Setting cos θ = +1 in
equation (1) gives the intensity maxima

Imax =
I0|t|4

1 + |r|4 − 2|r|2
.

Since the denominator can be identified as the square of (1 + |r|2), the final result for maximum
intensity can be written as

Imax =
I0|t|4

(1− |r|2)2
. (2)

Light intensity minima
I is minimum when the denominator in (1) is maximum. As a result of the minus sign in the
denominator, this condition is obtained when the factor 2|r| cos θ is minimum. The minima of
2|r| cos θ occur when cos θ = −1. Values of cos θ = −1 correspond to θ = π(2n + 1) where
n = . . .−2,−1, 0, 1, 2, . . . (see Section 4.5). Setting cos θ = −1 in equation (1) gives an expression
for the intensity minima

Imin =
I0|t|4

1 + |r|4 + 2|r|2
.

Since the denominator can be recognised as the square of (1 + |r|2), the final result for minimum
intensity can be written as

Imin =
I0|t|4

(1 + |r|2)2
(3)

Interpretation
The interference fringes for intensity maxima or minima occur at constant angle θ and therefore
describe concentric rings of alternating light and shadow as sketched in the figure below. From the
centre to the periphery of the concentric ring system, the fringes occur in the following order

(a) a fringe of maximum light at the centre (bright dot for θ = 0),

(b) a circular fringe of minimum light at angle θ = π,

(c) a circular fringe of maximum light at 2π etc.

θ = 2π

θ = π

θ = 3π

Figure 32: Sketch of interference fringes due to a glass plate
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Exercises

1. Express the following angles in radians (as multiples of π)

(a) 120◦ (b) 20◦ (c) 135◦ (d) 300◦ (e) −90◦ (f) 720◦

2. Express in degrees the following quantities which are in radians

(a)
π

2
(b)

3π

2
(c)

5π

6
(d)

11π

9
(e) −π

8
(f)

1

π

3. Obtain the precise values of all 6 trigonometric functions of the angle θ for the situation shown
in the figure:

P (−3, 1)
θ

4. Obtain all the values of x between 0 and 2π such that

(a) sin x =
1√
2

(b) cos x =
1

2
(c) sin x = −

√
3

2
(d) cos x = − 1√

2
(e) tan x = 2

(f) tan x = −1

2
(g) cos(2x + 60◦) = 2 (h) cos(2x + 60◦) =

1

2

5. Obtain all the values of θ in the given domain satisfying the following quadratic equations

(a) 2 sin2 θ − sin θ = 0 0 ≤ θ ≤ 360◦

(b) 2 cos2 θ + 7 cos θ + 3 = 0 0 ≤ θ ≤ 360◦

(c) 4 sin2 θ − 1 = 0

6. (a) Show that the area A of a sector formed by a central angle θ radians in a circle of radius
r is given by

A =
1

2
r2θ.

(Hint: By proportionality the ratio of the area of the sector to the total area of the circle
equals the ratio of θ to the total angle at the centre of the circle.)

(b) What is the value of the shaded area shown in the figure if θ is measured (i) in radians,
(ii) in degrees?

θ

r

R

7. Sketch, over 0 < θ < 2π, the graph of (a) sin 2θ (b) sin
1

2
θ (c) cos 2θ (d) cos

1

2
θ.

Mark the horizontal axis in radians in each case. Write down the period of sin 2θ and the

period of cos
1

2
θ.
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Answers

1. (a)
2π

3
(b)

π

9
(c)

3π

4
(d)

5π

3
(e) −π

2
(f) 4π

2. (a) 15◦ (b) 270◦ (c) 150◦ (d) 220◦ (e) −22.5◦ (f)
180◦

π2

3. The distance of the point P from the origin is r =
√

(−3)2 + 12 =
√

10. Then, since P lies

on a circle radius
√

10 rather than a circle of unit radius:

sin θ =
1√
10

cosec θ =
√

10

cos θ = − 3√
10

sec θ = −
√

10

3

tan θ =
1

−3
= −1

3
cot θ = −3

4. (a) x = 45◦
(π

4
radians

)
x = 135◦

(
3π

4

)
(recall sin(180− x) = sin x)

(b) x = 60◦
(π

3

)
x = 300◦

(
5π

3

)
(c) x = 240◦

(
4π

3

)
x = 300◦

(
5π

3

)
(d) x = 135◦

(
3π

4

)
x = 225◦

(
5π

4

)
(e) x = 63.43◦ x = 243.43◦ (remember tan x has period 180◦ or π radians)

(f) x = 153.43◦ x = 333.43◦

(g) No solution !

(h) x = 0◦, 120◦, 180◦, 300◦, 360◦

5. (a) 2 sin2 θ − sin θ = 0 so sin θ(2 sin θ − 1) = 0 so sin θ = 0

giving θ = 0◦, 180◦, 360◦ or sin θ =
1

2
giving θ = 30◦, 150◦

(b) 2 cos2 θ+7 cos θ+3 = 0. With x = cos θ we have 2x2+7x+3 = 0 (2x+1)(x+3) = 0

(factorising) so 2x = −1 or x = −1

2
. The solution x = −3 is impossible since x = cos θ.

The equation x = cos θ = −1

2
has solutions θ = 120◦, 240◦

(c) 4 sin2 θ = 1 so sin2 θ =
1

4
i.e. sin θ = ± 1

2
giving θ = 30◦, 150◦, 210◦, 330◦
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Answers continued

6. (a) Using the hint,

θ

2π
=

A

πr2

from where we obtain A =
πr2θ

2π
=

r2θ

2
(b) With θ in radians the shaded area is

S =
R2θ

2
− r2θ

2
=

θ

2
(R2 − r2)

If θ is in degrees, then since x radians =
180x◦

π
or x◦ =

πx

180
radians, we have

S =
πθ◦

360◦
(R2 − r2)

7. The graphs of sin 2θ and cos 2θ are identical in form with those of sin θ and cos θ respectively
but oscillate twice as rapidly.

The graphs of sin
1

2
θ and cos

1

2
θ oscillate half as rapidly as those of sin θ and cos θ.

−1

1

π

2
π 2π

sin
1

2
θ

cos 2θ

cos
1

2
θ

−1

1

−1

1

π 2π

π 2ππ 2π

sin 2θ

1

From the graphs sin 2θ has period 2π and cos 1
2
θ has period 4π. In general sin nθ has period

2π/n.
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Trigonometric
Identities

�
�

�
�4.3

Introduction
A trigonometric identity is a relation between trigonometric expressions which is true for all values
of the variables (usually angles). There are a very large number of such identities. In this Section we
discuss only the most important and widely used. Any engineer using trigonometry in an application
is likely to encounter some of these identities.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• have a basic knowledge of the geometry of
triangles

�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use the main trigonometric identities

• use trigonometric identities to combine
trigonometric functions
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1. Trigonometric identities
An identity is a relation which is always true. To emphasise this the symbol ‘≡’ is often used rather
than ‘=’. For example, (x+1)2 ≡ x2 +2x+1 (always true) but (x+1)2 = 0 (only true for x = −1).

Task

(a) Using the exact values, evaluate sin2 θ + cos2 θ for (i) θ = 30◦ (ii) θ = 45◦

[Note that sin2 θ means (sin θ)2, cos2 θ means (cos θ)2]

(b) Choose a non-integer value for θ and use a calculator to evaluate sin2 θ+cos2 θ.

Your solution

Answer

(a) (i) sin2 30◦ + cos2 30◦ =

(
1

2

)2

+

(√
3

2

)2

=
1

4
+

3

4
= 1

(ii) sin2 45◦ + cos2 45◦ =

(
1√
2

)2

+

(
1√
2

)2

=
1

2
+

1

2
= 1

(b) The answer should be 1 whatever value you choose.

Key Point 12

For any value of θ
sin2 θ + cos2 θ ≡ 1 (5)

One way of proving the result in Key Point 12 is to use the definitions of sin θ and cos θ obtained
from the circle of unit radius. Refer back to Figure 22 on page 23.
Recall that cos θ = OQ, sin θ = OR = QP . By Pythagoras’ theorem

(OQ)2 + (QP )2 = (OP )2 = 1

hence cos2 θ + sin2 θ = 1.
We have demonstrated the result (5) using an angle θ in the first quadrant but the result is true for
any θ i.e. it is indeed an identity.
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Task

By dividing the identity sin2 θ+cos2 θ ≡ 1 by (a) sin2 θ (b) cos2 θ obtain two
further identities.

[Hint: Recall the definitions of cosec θ, sec θ, cot θ.]

Your solution

Answer

(a)
sin2 θ

sin2 θ
+

cos2 θ

sin2 θ
=

1

sin2 θ
(b)

sin2 θ

cos2 θ
+

cos2 θ

cos2 θ
=

1

cos2 θ

1 + cot2θ ≡ cosec2θ tan2 θ + 1 ≡ sec2θ

Key Point 13 introduces two further important identities.

Key Point 13

sin(A + B) ≡ sin A cos B + cos A sin B (6)

cos(A + B) ≡ cos A cos B − sin A sin B (7)

Note carefully the addition sign in (6) but the subtraction sign in (7).

Further identities can readily be obtained from (6) and (7).
Dividing (6) by (7) we obtain

tan(A + B) ≡ sin(A + B)

cos(A + B)
≡ sin A cos B + cos A sin B

cos A cos B − sin A sin B

Dividing every term by cos A cos B we obtain

tan(A + B) ≡ tan A + tan B

1− tan A tan B

Replacing B by −B in (6) and (7) and remembering that cos(−B) ≡ cos B, sin(−B) ≡ − sin B
we find

sin(A−B) ≡ sin A cos B − cos A sin B

cos(A−B) ≡ cos A cos B + sin A sin B
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Task

Using the identities sin(A−B) ≡ sin A cos B − cos A sin B and

cos(A−B) ≡ cos A cos B + sin A sin B obtain an expansion for tan(A−B):

Your solution

Answer

tan(A−B) ≡ sin A cos B − cos A sin B

cos A cos B + sin A sin B
.

Dividing every term by cos A cos B gives

tan(A−B) ≡ tan A− tan B

1 + tan A tan B

The following identities are derived from those in Key Point 13.

Key Point 14

tan(A + B) ≡ tan A + tan B

1− tan A tan B
(8)

sin(A−B) ≡ sin A cos B − cos A sin B (9)

cos(A−B) ≡ cos A cos B + sin A sin B (10)

tan(A−B) ≡ tan A− tan B

1 + tan A tan B
(11)
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Engineering Example 5

Amplitude modulation

Introduction

Amplitude Modulation (the AM in AM radio) is a method of sending electromagnetic signals of a
certain frequency (signal frequency) at another frequency (carrier frequency) which may be better
for transmission. Modulation can be represented by the multiplication of the carrier and modulating
signals. To demodulate the signal the carrier frequency must be removed from the modulated
signal.

Problem in words

(a) A single frequency of 200 Hz (message signal) is amplitude modulated with a carrier frequency
of 2 MHz. Show that the modulated signal can be represented by the sum of two frequencies at
2× 106 ± 200 Hz

(b) Show that the modulated signal can be demodulated by using a locally generated carrier and
applying a low-pass filter.

Mathematical statement of problem

(a) Express the message signal as m = a cos(ωmt) and the carrier as c = b cos(uct).

Assume that the modulation gives the product mc = ab cos(uct) cos(ωmt).

Use trigonometric identities to show that

mc = ab cos(ωct) cos(umt) = k1 cos((ωc − um)t) + k2 cos((ωc + um)t)

where k1 and k2 are constants.

Then substitute ωc = 2× 106 × 2π and ωm = 200× 2π to calculate the two resulting frequencies.

(b) Use trigonometric identities to show that multiplying the modulated signal by b cos(uct) results
in the lowest frequency component of the output having a frequency equal to the original message
signal.

Mathematical analysis
(a) The message signal has a frequency of fm = 200 Hz so ωm = 2πfc = 2π × 200 = 400π radians
per second.

The carrier signal has a frequency of fc = 2× 106 Hz.

Hence ωc = 2πfc = 2π × 2× 106 = 4× 106π radians per second.

So mc = ab cos(4× 106πt) cos(400πt).

Key Point 13 includes the identity:

cos(A + B) + cos(A−B) ≡ 2 cos(A) cos(B)
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Rearranging gives the identity:

cos(A) cos(B) ≡ 1
2
(cos(A + B) + cos(A−B)) (1)

Using (1) with A = 4× 106πt and B = 400πt gives

mc = ab(cos(4× 106πt) cos(400πt)

= ab(cos(4× 106πt + 400πt) + cos(4× 106πt− 400πt))

= ab(cos(4000400πt) + cos(3999600πt))

So the modulated signal is the sum of two waves with angular frequency of 4000400π and 3999600π
radians per second corresponding to frequencies of 4000400π/(2π) and 39996000π/(2π), that is
2000200 Hz and 1999800 Hz i.e. 2× 106 ± 200 Hz.

(b) Taking identity (1) and multiplying through by cos(A) gives

cos(A) cos(A) cos(B) ≡ 1
2
cos(A)(cos(A + B) + cos(A−B))

so

cos(A) cos(A) cos(B) ≡ 1
2
(cos(A) cos(A + B) + cos(A) cos(A−B)) (2)

Identity (1) can be applied to both expressions in the right-hand side of (2). In the first expression,
using A + B instead of ‘B’, gives

cos(A) cos(A + B) ≡ 1

2
(cos(A + A + B) + cos(A− A−B)) ≡ 1

2
(cos(2A + B) + cos(B))

where we have used cos(−B) ≡ cos(B).

Similarly, in the second expression, using A−B instead of ‘B’, gives

cos(A) cos(A−B) ≡ 1
2
(cos(2A−B) + cos(B))

Together these give:

cos(A) cos(A) cos(B) ≡ 1

2
(cos(2A + B) + cos(B) + cos(2A−B) + cos(B))

≡ cos(B) +
1

2
(cos(2A + B) + cos(2A−B))

With A = 4×106πt and B = 400πt and substituting for the given frequencies, the modulated signal
multiplied by the original carrier signal gives

ab2 cos(4× 106πt) cos(4× 106πt) cos(400πt) =

ab2 cos(2π × 200t) + 1
2
ab2(cos(2× 4× 106πt + 400πt) + cos(2× 4× 106πt− 400πt))

The last two terms have frequencies of 4× 106 ± 200 Hz which are sufficiently high that a low-pass
filter would remove them and leave only the term

ab2 cos(2π × 200t)

which is the original message signal multiplied by a constant term.
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Interpretation

Amplitude modulation of a single frequency message signal (fm) with a single frequency carrier signal
(fc) can be shown to be equal to the sum of two cosines with frequencies fc ± fm. Multiplying the
modulated signal by a locally generated carrier signal and applying a low-pass filter can reproduce
the frequency, fm, of the message signal.

This is known as double side band amplitude modulation.

Example 2
Obtain expressions for cos θ in terms of the sine function and for sin θ in terms of
the cosine function.

Solution

Using (9) with A = θ, B =
π

2
we obtain

cos
(
θ − π

2

)
≡ cos θ cos

(π

2

)
+ sin θ sin

(π

2

)
≡ cos θ (0) + sin θ (1)

i.e. sin θ ≡ cos
(
θ − π

2

)
≡ cos

(π

2
− θ
)

This result explains why the graph of sin θ has exactly the same shape as the graph of cos θ but it

is shifted to the right by
π

2
. (See Figure 29 on page 28). A similar calculation using (6) yields the

result

cos θ ≡ sin
(
θ +

π

2

)
.

Double angle formulae
If we put B = A in the identity given in (6) we obtain Key Point 15:

Key Point 15

sin 2A ≡ sin A cos A + cos A sin A so sin 2A ≡ 2 sin A cos A (12)

42 HELM (2008):
Workbook 4: Trigonometry



®

Task

Substitute B = A in identity (7) in Key Point 13 on page 38 to obtain an identity
for cos 2A. Using sin2 A+cos2 A ≡ 1 obtain two alternative forms of the identity.

Your solution

Answer
Using (7) with B ≡ A

cos(2A) ≡ (cos A)(cos A)− (sin A)(sin A)

. .. cos(2A) ≡ cos2 A− sin2 A (13)

Substituting for sin2 A in (13) we obtain

cos 2A ≡ cos2 A− (1− cos2 A)

≡ 2 cos2 A− 1 (14)

Alternatively substituting for cos2 A in (13)

cos 2A ≡ (1− sin2 A)− sin2 A

cos 2A ≡ 1− 2 sin2 A (15)

Task

Use (14) and (15) to obtain, respectively, cos2 A and sin2 A in terms of cos 2A.

Your solution

Answer

From (14) cos2 A ≡ 1

2
(1 + cos 2A). From (15) sin2 A ≡ 1

2
(1− cos 2A).
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Task

Use (12) and (13) to obtain an identity for tan 2A in terms of tan A.

Your solution

Answer

tan 2A ≡ sin 2A

cos 2A
≡ 2 sin A cos A

cos2 A− sin2 A

Dividing numerator and denominator by cos2 A we obtain

tan 2A ≡
2
sin A

cos A

1− sin2 A

cos2 A

≡ 2 tan A

1− tan2 A
(16)

Half-angle formulae

If we replace A by
A

2
and, consequently 2A by A, in (12) we obtain

sin A ≡ 2 sin

(
A

2

)
cos

(
A

2

)
(17)

Similarly from (13)

cos A ≡ 2 cos2

(
A

2

)
− 1. (18)

These are examples of half-angle formulae. We can obtain a half-angle formula for tan A using

(16). Replacing A by
A

2
and 2A by A in (16) we obtain

tan A ≡
2 tan

(
A

2

)
1− tan2

(
A

2

) (19)

Other formulae, useful for integration when trigonometric functions are present, can be obtained
using (17), (18) and (19) shown in the Key Point 16.
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Key Point 16

If t = tan

(
A

2

)
then

sin A =
2t

1 + t2
(20)

cos A =
1− t2

1 + t2
(21)

tan A =
2t

1− t2
(22)

Sum of two sines and sum of two cosines
Finally, in this Section, we obtain results that are widely used in areas of science and engineering
such as vibration theory, wave theory and electric circuit theory.
We return to the identities (6) and (9)

sin(A + B) ≡ sin A cos B + cos A sin B

sin(A−B) ≡ sin A cos B − cos A sin B

Adding these identities gives

sin(A + B) + sin(A−B) ≡ 2 sin A cos B (23)

Subtracting the identities produces

sin(A + B)− sin(A−B) ≡ 2 cos A sin B (24)

It is now convenient to let C = A + B and D = A−B so that

A =
C + D

2
and B =

C −D

2

Hence (23) becomes

sin C + sin D ≡ 2 sin

(
C + D

2

)
cos

(
C −D

2

)
(25)

Similarly (24) becomes

sin C − sin D ≡ 2 cos

(
C + D

2

)
sin

(
C −D

2

)
(26)
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Task

Use (7) and (10) to obtain results for the sum and difference of two cosines.

Your solution

Answer

cos(A + B) ≡ cos A cos B − sin A sin B and cos(A−B) ≡ cos A cos B + sin A sin B

. .. cos(A + B) + cos(A−B) ≡ 2 cos A cos B

cos(A + B)− cos(A−B) ≡ −2 sin A sin B

Hence with C = A + B and D = A−B

cos C + cos D ≡ 2 cos

(
C + D

2

)
cos

(
C −D

2

)
(27)

cos C − cos D ≡ −2 sin

(
C + D

2

)
sin

(
C −D

2

)
(28)

Summary
In this Section we have covered a large number of trigonometric identities. The most important of
them and probably the ones most worth memorising are given in the following Key Point.

Key Point 17

cos2 θ + sin2 θ ≡ 1

sin 2θ ≡ 2 sin θ cos θ

cos 2θ ≡ cos2 θ − sin2 θ

≡ 2 cos2 θ − 1

≡ 1− 2 sin2 θ

sin(A±B) ≡ sin A cos B ± cos A sin B

cos(A±B) ≡ cos A cos B ∓ sin A sin B
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Task

A projectile is fired from the ground with an initial speed u m s−1 at an angle of
elevation α◦. If air resistance is neglected, the vertical height, y m, is related to
the horizontal distance, x m, by the equation

y = x tan α− gx2sec2α

2u2
where g m s−2 is the gravitational constant.

[This equation is derived in 34 Modelling Motion pages 16-17.]

(a) Confirm that y = 0 when x = 0:

Your solution

Answer
When y = 0, the left-hand side of the equation is zero. Since x appears in both of the terms on
the right-hand side, when x = 0, the right-hand side is zero.

(b) Find an expression for the value of x other than x = 0 at which y = 0 and state how this value
is related to the maximum range of the projectile:

Your solution

Answer

When y = 0, the equation can be written
gx2sec2α

2u2
− x tan α = 0

If x = 0 is excluded from consideration, we can divide through by x and rearrange to give

gxsec2α

2u2
= tan α

To make x the subject of the equation we need to multiply both sides by
2u2

gsec2α
.

Given that 1/sec2α ≡ cos2 α, tan α ≡ sin α/ cos α and sin 2α ≡ 2 sin α cos α, this results in

x =
2u2 sin α cos α

g
=

u2 sin 2α

g

This represents the maximum range.
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(c) Find the value of x for which the value of y would be a maximum and thereby obtain an expression
for the maximum height:

Your solution

Answer
If air resistance is neglected, we can assume that the parabolic path of the projectile is symmetrical
about its highest point. So the highest point will occur at half the maximum range i.e. where

x =
u2 sin 2α

2g

Substituting this expression for x in the equation for y gives

y =

(
u2 sin 2α

2g

)
tan α−

(
u2 sin 2α

2g

)2
gsec2α

2u2

Using the same trigonometric identities as before,

y =
u2 sin2 α

g
− u2 sin2 α

2g
=

u2 sin2 α

2g
This represents the maximum height.

(d) Assuming u = 20 m s−1, α = 60◦ and g = 10 m s−2, find the maximum value of the range and
the horizontal distances travelled when the height is 10 m:

Your solution
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Answer
Substitution of u = 20, α = 60, g = 10 and y = 10 in the original equation gives a quadratic for
x:

10 = 1.732x− 0.05x2 or 0.05x2 − 1.732x + 10 = 0

Solution of this quadratic yields x = 7.33 or x = 27.32 as the two horizontal ranges at which
y = 10. These values are illustrated in the diagram below which shows the complete trajectory of
the projectile.

Height

Horizontal Range

x1 = 7.33 x2 = 27.32

0 5 10 15 20 25 30 35

5

10

15
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Exercises

1. Show that sin tsect ≡ tan t.

2. Show that (1 + sin t)(1 + sin(−t)) ≡ cos2 t.

3. Show that
1

tan θ + cot θ
≡ 1

2
sin 2θ.

4. Show that sin2(A + B)− sin2(A−B ≡ sin 2A sin 2B.

(Hint: the left-hand side is the difference of two squared quantities.)

5. Show that
sin 4θ + sin 2θ

cos 4θ + cos 2θ
≡ tan 3θ.

6. Show that cos4 A− sin4 A ≡ cos 2A

7. Express each of the following as the sum (or difference) of 2 sines (or cosines)

(a) sin 5x cos 2x (b) 8 cos 6x cos 4x (c)
1

3
sin

1

2
x cos

3

2
x

8. Express (a) sin 3θ in terms of cos θ. (b) cos 3θ in terms of cos θ.

9. By writing cos 4x as cos 2(2x), or otherwise, express cos 4x in terms of cos x.

10. Show that tan 2t ≡ 2 tan t

2− sec2t
.

11. Show that
cos 10t− cos 12t

sin 10t + sin 12t
≡ tan t.

12. Show that the area of an isosceles triangle with equal sides of length x is
x2

2
sin θ

where θ is the angle between the two equal sides. Hint: use the following diagram:

x

A

B CD

θ
2

x
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Answers

1. sin t.sect ≡ sin t.
1

cos t
≡ sin t

cos t
≡ tan t.

2. (1 + sin t)(1 + sin(−t)) ≡ (1 + sin t)(1− sin t) ≡ 1− sin2 t ≡ cos2 t

3.
1

tan θ + cos θ
≡ 1

sin θ

cos θ
+

cos θ

sin θ

≡ 1

sin2 θ + cos2 θ

sin θ cos θ

≡ sin θ cos θ

sin2 θ + cos2 θ
≡ sin θ cos θ ≡ 1

2
sin 2θ

4. Using the hint and the identity x2 − y2 ≡ (x− y)(x + y) we have

sin2(A + B)− sin2(A−B) ≡ (sin(A + B)− sin(A−B))(sin(A + B) + sin(A−B))

The first bracket gives

sin A cos B + cos A sin B − (sin A cos B − cos A sin B) ≡ 2 cos A sin B

Similarly the second bracket gives 2 sin A cos B.

Multiplying we obtain (2 cos A sin A)(2 cos B sin B) ≡ sin 2A. sin 2B

5.
sin 4θ + sin 2θ

cos 4θ + cos 2θ
≡ 2 sin 3θ cos θ

2 cos 3θ cos θ
≡ sin 3θ

cos 3θ
≡ tan 3θ

6.

cos4 A− sin4 A ≡ (cos A)4 − (sin A)4 ≡ (cos2 A)2 − (sin2 A)2

≡ (cos2 A− sin2 A)(cos2 A + sin2 A)

≡ cos2 A− sin2 A ≡ cos 2A

7. (a) Using sin A + sin B ≡ 2 sin

(
A + B

2

)
cos

(
A−B

2

)

Clearly here
A + B

2
= 5x

A−B

2
= 2x giving A = 7x B = 3x

. .. sin 5x cos 2x ≡ 1

2
(sin 7x + sin 3x)

(b) Using cos A + cos B ≡ 2 cos

(
A + B

2

)
cos

(
A−B

2

)
.

With
A + B

2
= 6x

A−B

2
= 4x giving A = 10x B = 2x

. .. 8 cos 6x cos 4x ≡ 4(cos 6x + cos 2x)

(c)
1

3
sin

(
1

2
x

)
cos

(
3x

2

)
≡ 1

6
(sin 2x− sin x)
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Answers

8.

(a) sin 3θ ≡ sin(2θ + θ) = sin 2θ cos θ + cos 2θ sin θ

≡ 2 sin θ cos2 θ + (cos2 θ − sin2 θ) sin θ

≡ 3 sin θ cos2 θ − sin3 θ

≡ 3 sin θ(1− sin2 θ)− sin3 θ ≡ 3 sin θ − 4 sin3 θ

(b) cos 3θ ≡ cos(2θ + θ) ≡ cos 2θ cos θ − sin 2θ sin θ

≡ (cos2 θ − sin2 θ) cos θ − 2 sin θ cos θ sin θ

≡ cos3 θ − 3 sin2 θ cos θ

≡ cos3 θ − 3(1− cos2 θ) cos θ

≡ 4 cos3 θ − 3 cos θ

9.

cos 4x = cos 2(2x) ≡ 2 cos2(2x)− 1

≡ 2(cos 2x)2 − 1

≡ 2(2 cos2 x− 1)2 − 1

≡ 2(4 cos4 x− 4 cos2 x + 1)− 1 ≡ 8 cos4 x− 8 cos2 x + 1.

10. tan 2t ≡ 2 tan t

1− tan2 t
≡ 2 tan t

1− (sec2t− 1)
≡ 2 tan t

2− sec2t

11. cos 10t− cos 12t ≡ 2 sin 11t sin t sin 10t + sin 12t ≡ 2 sin 11t cos(−t)

. ..
cos 10t− cos 12t

sin 10t + sin 12t
≡ sin t

cos(−t)
≡ sin t

cos t
≡ tan t

12. The right-angled triangle ACD has area
1

2
(CD)(AD)

But sin

(
θ

2

)
=

CD

x
. .. CD = x sin

(
θ

2

)
cos

(
θ

2

)
=

AD

x
. .. AD = x cos

(
θ

2

)

. .. area of ∆ACD =
1

2
x2 sin

(
θ

2

)
cos

(
θ

2

)
=

1

4
x2 sin θ

. .. area of ∆ABC = 2× area of ∆ACD =
1

2
x2 sin θ

52 HELM (2008):
Workbook 4: Trigonometry



®

Applications of
Trigonometry
to Triangles

�
�

�
�4.4

Introduction
We originally introduced trigonometry using right-angled triangles. However, the subject has appli-
cations in dealing with any triangles such as those that might arise in surveying, navigation or the
study of mechanisms.
In this Section we show how, given certain information about a triangle, we can use appropriate rules,
called the Sine rule and the Cosine rule, to fully ‘solve the triangle’ i.e. obtain the lengths of all
the sides and the size of all the angles of that triangle.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have a knowledge of the basics of
trigonometry

• be aware of the standard trigonometric
identities#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• use trigonometry in everyday situations

• fully determine all the sides and angles and
the area of any triangle from partial
information
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1. Applications of trigonometry to triangles

Area of a triangle

The area S of any triangle is given by S =
1

2
× (base)× (perpendicular height) where ‘perpendicular

height’ means the perpendicular distance from the side called the ‘base’ to the opposite vertex. Thus

for the right-angled triangle shown in Figure 33(a) S =
1

2
b a. For the obtuse-angled triangle

shown in Figure 33(b) the area is S =
1

2
bh.

a

b
A

B

C

c
a

b
A

B

C

c

C

h

Dθ θ

(a) (b)

Figure 33

If we use C to denote the angle ACB in Figure 33(b) then

sin(180− C) =
h

a
(triangle BCD is right-angled)

. .. h = a sin(180− C) = a sin C (see the graph of the sine wave or expand sin(180− c))

. .. S =
1

2
b a sin C 1(a)

By other similar constructions we could demonstrate that

S =
1

2
a c sin B 1(b)

and

S =
1

2
b c sin A 1(c)

Note the pattern here: in each formula for the area the angle involved is the one between the sides
whose lengths occur in that expression.
Clearly if C is a right-angle (so sin C = 1) then

S =
1

2
b a as for Figure 33(a).

Note: from now on we will not generally write ‘≡’ but use the more usual ‘=’.
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The Sine rule
The Sine rule is a formula which, if we are given certain information about a triangle, enables us to
fully ‘solve the triangle’ i.e. obtain the lengths of all three sides and the value of all three angles.
To show the rule we note that from the formulae (1a) and (1b) for the area S of the triangle ABC
in Figure 33 we have

ba sin C = ac sin B or
b

sin B
=

c

sin C

Similarly using (1b) and (1c)

ac sin B = bc sin A or
a

sin A
=

b

sin B

Key Point 18

The Sine Rule
For any triangle ABC where a is the length of the side opposite angle A, b the side length opposite
angle B and c the side length opposite angle C states

a

sin A
=

b

sin B
=

c

sin C

Use of the Sine rule
To be able to fully determine all the angles and sides of a triangle it follows from the Sine rule that
we must know

either two angles and one side : (knowing two angles of a triangle really means that all
three are known since the sum of the angles is 180◦)

or two sides and an angle opposite one of those two sides.

Example 3
Solve the triangle ABC given that a = 32 cm, b = 46 cm and angle B = 63.25◦.

Solution

Using the first pair of equations in the Sine rule (Key Point 18) we have

32

sin A
=

46

sin 63.25◦
. .. sin A =

32

46
sin 63.25◦ = 0.6212

so A = sin−1(0.6212) = 38.4◦ (by calculator)
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Solution (contd.)

You should, however, note carefully that because of the form of the graph of the sine function there
are two angles between 0◦ and 180◦ which have the same value for their sine i.e. x and (180− x).
See Figure 34.

x 180 −x

sin θ

θ
◦

Figure 34

In our example

A = sin−1(0.6212) = 38.4◦

or

A = 180◦ − 38.4◦ = 141.6◦.

However since we are given that angle B is 63.25◦, the value of 141.6◦ for angle A is clearly
impossible.

To complete the problem we simply note that

C = 180◦ − (38.4◦ + 63.25◦) = 78.35◦

The remaining side c is calculated from the Sine rule, using either a and sin A or b and sin B.

Task

Find the length of side c in Example 3.

Your solution

Answer

Using, for example,
a

sin A
=

c

sin C

we have c = a
sin C

sin A
= 32× sin 78.35◦

0.6212
=

32× 0.9794

0.6212
= 50.45 cm.
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The ambiguous case
When, as in Example 3, we are given two sides and the non-included angle of a triangle, particular
care is required.
Suppose that sides b and c and the angle B are given. Then the angle C is given by the Sine rule as

A

B

C
sin C = c

sin B

b

b

c a

Figure 35
Various cases can arise:

(i) c sin B > b

This implies that
c sin B

b
> 1 in which case no triangle exists since sin C cannot exceed 1.

(ii) c sin B = b

In this case sin C =
c sin B

b
= 1 so C = 90◦.

(iii) c sin B < b

Hence sin C =
c sin B

b
< 1.

As mentioned earlier there are two possible values of angle C in the range 0 to 180◦, one acute angle
(< 90◦) and one obtuse (between 90◦ and 180◦.) These angles are C1 = x and C2 = 180− x. See
Figure 36.
If the given angle B is greater than 90◦ then the obtuse angle C2 is not a possible solution because,
of course, a triangle cannot possess two obtuse angles.

b

A

B

c

b

C1C2

B C1C2

Figure 36

For B less than 90◦ there are still two possibilities.
If the given side b is greater than the given side c, the obtuse angle solution C2 is not possible because
then the larger angle would be opposite the smaller side. (This was the situation in Example 3.)
The final case

b < c, B < 90◦

does give rise to two possible values C1, C2 of the angle C and is referred to as the ambiguous
case. In this case there will be two possible values a1 and a2 for the third side of the triangle
corresponding to the two angle values

A1 = 180◦ − (B + C1)

A2 = 180◦ − (B + C2)
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Task

Show that two triangles fit the following data for a triangle ABC:

a = 4.5 cm b = 7 cm A = 35◦

Obtain the sides and angle of both possible triangles.

Your solution

Answer

We have, by the Sine rule, sin B =
b sin A

a
=

7 sin 35◦

4.5
= 0.8922

So B = sin−1 0.8922− 63.15◦ (by calculator) or 180− 63.15◦ = 116.85◦.

In this case, both values of B are indeed possible since both values are larger than angle A (side b
is longer than side a). This is the ambiguous case with two possible triangles.

B = B1 = 63.15◦ B = B2 = 116.85◦

C = C1 = 81.85◦ C = C2 = 28.15◦

c = c1 where
c1

sin 81.85◦
=

4.5

sin 35◦
c = c2 where

c2

sin 28.15
=

4.5

sin 35◦

c1 =
4.5× 0.9899

0.5736
c2 =

4.5× 0.4718

0.5736

= 7.766 cm = 3.701 cm

You can clearly see that we have one acute angled triangle AB1C1 and one obtuse angled AB2C2

corresponding to the given data.
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The Cosine rule

The Cosine rule is an alternative formula for ‘solving a triangle’ ABC. It is particularly useful for
the case where the Sine rule cannot be used, i.e. when two sides of the triangle are known together
with the angle between these two sides.

Consider the two triangles ABC shown in Figure 37.

a

B

c

A

c

B

A
C

a

A

A D
C

D
b b

(a)                                           (b)

Figure 37

In Figure 37(a) using the right-angled triangle ABD, BD = c sin A.

In Figure 37(b) using the right-angled triangle ABD, BD = c sin(π − A) = c sin A.

In Figure 37(a) DA = c cos A . .. CD = b− c cos A

In Figure 37(b) DA = c cos(180− A) = −c cos A . .. CD = b + AD = b− c cos A

In both cases, in the right-angled triangle BDC

(BC)2 = (CD)2 + (BD)2

So, using the above results,

a2 = (b− c cos A)2 + c2(sin A)2 = b2 − 2bc cos A + c2(cos2 A + sin2 A)

giving

a2 = b2 + c2 − 2bc cos A (3)

Equation (3) is one form of the Cosine rule. Clearly it can be used, as we stated above, to calculate
the side a if the sides b and c and the included angle A are known.

Note that if A = 90◦, cos A = 0 and (3) reduces to Pythagoras’ theorem.

Two similar formulae to (3) for the Cosine rule can be similarly derived - see following Key Point:
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Key Point 19

Cosine Rule

For any triangle with sides a, b, c and corresponding angles A, B, C

a2 = b2 + c2 − 2bc cos A cos A =
b2 + c2 − a2

2bc

b2 = c2 + a2 − 2ca cos B cos B =
c2 + a2 − b2

2ca

c2 = a2 + b2 − 2bc cos C cos C =
a2 + b2 − c2

2ab

Example 4
Solve the triangle where b = 7.00 cm, c = 3.59 cm, A = 47◦.

Solution

Since two sides and the angle A between these sides is given we must first use the Cosine rule in
the form (3a):

a2 = (7.00)2 + (3.59)2 − 2(7.00)(3.59) cos 47◦ = 49 + 12.888− 34.277 = 27.610

so a =
√

27.610 = 5.255 cm.

We can now most easily use the Sine rule to solve one of the remaining angles:

7.00

sin B
=

5.255

sin 47◦
so sin B =

7.00 sin 47◦

5.255
= 0.9742

from which B = B1 = 76.96◦ or B = B2 = 103.04◦.

At this stage it is not obvious which value is correct or whether this is the ambiguous case and both
values of B are possible.
The two possible values for the remaining angle C are

C1 = 180◦ − (47◦ + 76.96◦) = 56.04◦

C2 = 180◦ − (47 + 103.04) = 29.96◦

Since for the sides of this triangle b > a > c then similarly for the angles we must have
B > A > C so the value C2 = 29.96◦ is the correct one for the third side.

The Cosine rule can also be applied to some triangles where the lengths a, b and c of the three sides
are known and the only calculations needed are finding the angles.
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Task

A triangle ABC has sides

a = 7cm b = 11 cm c = 12 cm.

Obtain the values of all the angles of the triangle. (Use Key Point 19.)

Your solution

Answer
Suppose we find angle A first using the following formula from Key Point 19

cos A =
b2 + c2 − a2

2bc

Here cos A =
112 + 122 − 72

2× 11× 12
= 0.818 so A = cos−1(0.818) = 35.1◦

(There is no other possibility between 0◦ and 180◦ for A. No ‘ambiguous case’ arises using the
Cosine rule!)

Another angle B or C could now be obtained using the Sine rule or the Cosine rule.

Using the following formula from Key Point 19:

cos B =
c2 + a2 − b2

2ca
=

122 + 72 − 112

2× 12× 7
= 0.429 so B = cos−1(0.429) = 64.6◦

Since A + B + C = 180◦ we can deduce C = 80.3◦
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Exercises

1. Determine the remaining angles and sides for the following triangles:

a

c 6

A

B C

130◦

20◦

(a)

A

B Ca

3 4

80◦ C

(b)

10 b

12

A

B C
26◦

(c)

(d) The triangles ABC with B = 50◦, b = 5, c = 6. (Take special care here!)

2. Determine all the angles of the triangles ABC where the sides have lengths a = 7, b = 66
and c = 9

3. Two ships leave a port at 8.00 am, one travelling at 12 knots (nautical miles per hour) the
other at 10 knots. The faster ship maintains a bearing of N47◦W, the slower one a bearing
S20◦W. Calculate the separation of the ships at midday. (Hint: Draw an appropriate diagram.)

4. The crank mechanism shown below has an arm OA of length 30 mm rotating anticlockwise
about 0 and a connecting rod AB of length 60 mm. B moves along the horizontal line

OB. What is the length OB when OA has rotated by
1

8
of a complete revolution from the

horizontal?

A

BO
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Answers

1.

(a) Using the Sine rule
a

sin 130◦
=

6

sin 20◦
=

c

sin C
. From the two left-hand equations

a = 6
sin 130◦

sin 20◦
' 13.44.

Then, since C = 30◦, the right hand pair of equations give c = 6
sin 30◦

sin 20◦
' 8.77.

(b) Again using the Sine rule
a

sin A
=

4

sin 80◦
=

3

sin C
so sin C =

3

4
sin 80◦ = 0.7386

there are two possible angles satisfying sin C = 0.7386 or C = sin−1(0.7386).

These are 47.61◦ and 180◦ − 47.614◦ = 132.39◦. However the obtuse angle value is
impossible here because the angle B is 80◦ and the sum of the angles would then exceed
180◦ Hence c = 47.01◦ so A = 180◦ − (80◦ + 47.61◦) = 52.39◦.

Then,
a

sin 52.39◦
=

4

sin 80◦
so a = 4

sin 52.39◦

sin 80◦
' 3.22

(c) In this case since two sides and the included angle are given we must use the Cosine rule.
The appropriate form is

b2 = c2 + a2 − 2ca cos B = 102 + 122 − (2)(10)(12) cos 26◦ = 28.2894

so b =
√

28.2894 = 5.32

Continuing we use the Cosine rule again to determine say angle C where

c2 = a2 + b2 − 2ab cos C that is 102 = 122 + (5.32)2 − 2(1.2)(5.32) cos C

from which cos C = 0.5663 and C = 55.51◦ (There is no other possibility for C between
0◦ and 180◦. Recall that the cosine of an angle between 90◦ and 180◦ is negative.)
Finally, A = 180− (26◦ + 55.51◦) = 98.49◦.

(d) By the Sine rule

a

sin A
=

5

sin 50◦
=

6

sin C
. .. sin C = 6

sin 50◦

5
= 0.9193

Then C = sin−1(0.9193) = 66.82◦ (calculator) or 180◦− 66.82◦ = 113.18◦. In this case
both values of C say C1 = 66.82◦ and C2 = 113.18◦ are possible and there are two
possible triangles satisfying the given data. Continued use of the Sine rule produces

(i) with C1 = 66.82 (acute angle triangle) A = A1 = 180− (66.82◦ + 50◦) = 63.18◦

a = a1 = 5.83

(ii) with C2 = 113.18◦ A = A2 = 16.82◦ a = a2 = 1.89
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Answers continued

2. We use the Cosine rule firstly to find the angle opposite the longest side. This will tell us
whether the triangle contains an obtuse angle. Hence we solve for c using

c2 = a2 + b2 − 2ab cos C 81 = 49 + 36− 84 cos C

from which 84 cos C = 4 cos C = 4/84 giving C = 87.27◦.

So there is no obtuse angle in this triangle and we can use the Sine rule knowing that there
is only one possible triangle fitting the data. (We could continue to use the Cosine rule if we
wished of course.) Choosing to find the angle B we have

6

sin B
=

9

sin 87.27◦

from which sin B = 0.6659 giving B = 41.75◦. (The obtuse case for B is not possible, as
explained above.) Finally A = 180◦ − (41.75◦ + 87.27◦) = 50.98◦.

3.

A

B

O

N

S

c
48

40
20◦

47◦

At midday (4 hours travelling) ships A and B are respectively 48 and 40 nautical miles from
the port O. In triangle AOB we have

AOB = 180◦ − (47◦ + 20◦) = 113◦.

We must use the Cosine rule to obtain the required distance apart of the ships. Denoting the
distance AB by c, as usual,

c2 = 482 + 402 − 2(48)(40) cos 113◦ from which c2 = 5404.41 and c = 73.5 nautical miles.

4. By the Sine rule
30

sin B
=

60

sin 45
. .. sin B =

30

60
sin 45◦ = 0.353 so B = 20.704◦.

A

BO 45◦

30mm 60mm (Position after 1
8 revolution)

The obtuse value of sin−1(0.353) is impossible. Hence,

A = 180◦ − (45◦ + 20.704◦) = 114.296◦.

Using the sine rule again
30

0.353
=

OB

sin 114.296
from which OB = 77.5 mm.
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Applications of
Trigonometry
to Waves

�
�

�
�4.5

Introduction
Waves and vibrations occur in many contexts. The water waves on the sea and the vibrations of
a stringed musical instrument are just two everyday examples. If the vibrations are simple ‘to and
fro’ oscillations they are referred to as ‘sinusoidal’ which implies that a knowledge of trigonometry,
particularly of the sine and cosine functions, is a necessary pre-requisite for dealing with their analysis.
In this Section we give a brief introduction to this topic.

#

"

 

!
Prerequisites

Before starting this Section you should . . .

• have a knowledge of the basics of
trigonometry

• be aware of the standard trigonometric
identities#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• use simple trigonometric functions to
describe waves

• combine two waves of the same frequency as
a single wave in amplitude-phase form
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1. Applications of trigonometry to waves

Two-dimensional motion
Suppose that a wheel of radius R is rotating anticlockwise as shown in Figure 38.

ωt A

B

P

Q

x

y

O

R

Figure 38
Assume that the wheel is rotating with an angular velocity ω radians per second about O so that, in
a time t seconds, a point (x, y) initially at position A on the rim of the wheel moves to a position B
such that angle AOB = ωt radians.
Then the coordinates (x, y) of B are given by

x = OP = R cos ωt

y = OQ = PB = R sin ωt

We know that both the standard sine and cosine functions have period 2π. Since the angular velocity

is ω radians per second the wheel will make one complete revolution in
2π

ω
seconds.

The time
2π

ω
(measured in seconds in this case) for one complete revolution is called the period of

rotation of the wheel. The number of complete revolutions per second is thus
1

T
= f say which is

called the frequency of revolution. Clearly f =
1

T
=

ω

2π
relates the three quantities

introduced here. The angular velocity ω = 2πf is sometimes called the angular frequency.

One-dimensional motion
The situation we have just outlined is two-dimensional motion. More simply we might consider
one-dimensional motion.

An example is the motion of the projection onto the x-axis of a point B which moves with uniform
angular velocity ω round a circle of radius R (see Figure 39). As B moves round, its projection P
moves to and fro across the diameter of the circle.
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ωt A

B

P
x

y

O

R

x

Figure 39

The position of P is given by

x = R cos ωt (1)

Clearly, from the known properties of the cosine function, we can deduce the following:

1. x varies periodically with t with period T =
2π

ω
.

2. x will have maximum value +R and minimum value −R.

(This quantity R is called the amplitude of the motion.)

Task

Using (1) write down the values of x at the following times:

t = 0, t =
π

2ω
, t =

π

ω
, t =

3π

2ω
, t =

2π

ω
.

Your solution

t 0
π

2ω

π

ω

3π

2ω

2π

ω

x

Answer

t 0
π

2ω

π

ω

3π

2ω

2π

ω

x R 0 −R 0 R
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Using (1) this ’to and fro’ or ‘vibrational’ or ‘oscillatory’ motion between R and −R continues
indefinitely. The technical name for this motion is simple harmonic. To a good approximation it
is the motion exhibited (i) by the end of a pendulum pulled through a small angle and then released
(ii) by the end of a hanging spring pulled down and then released. See Figure 40 (in these cases
damping of the pendulum or spring is ignored).

Figure 40

Task

Using your knowledge of the cosine function and the results of the previous Task
sketch the graph of x against t where

x = R cos ωt for t = 0 to t =
4π

ω

Your solution

Answer

R

−R

2π

ω

4π

ω

t

x = R cos ωt

period

This graph shows part of a cosine wave, specifically two periods of oscillation. The shape of the
graph suggests that the term wave is indeed an appropriate description.
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We know that the shape of the cosine graph and the sine graph are identical but offset by
π

2
radians

horizontally. Bearing this in mind, attempt the following Task.

Task

Write the equation of the wave x(t), part of which is shown in the following graph.
You will need to find the period T and angular frequency ω.

5

− 5

4 8 t (secs)

x

Your solution

Answer

From the shape of the graph we have a sine wave rather than a cosine wave. The amplitude is 5.

The period T = 4s so the angular frequency ω =
2π

4
=

π

2
. Hence x = 5 sin

(
πt

2

)
.

The quantity x, a function of t, is referred to as the displacement of the wave.

Time shifts between waves
We recall that cos

(
θ − π

2

)
= sin θ which means that the graph of x = sin θ is the same shape

as that of x = cos θ but is shifted to the right by
π

2
radians.

Suppose now that we consider the waves

x1 = R cos 2t x2 = R sin 2t

Both have amplitude R, angular frequency ω = 2 rad s−1. Also

x2 = R cos
(
2t− π

2

)
= R cos

[
2
(
t− π

4

)]
The graphs of x1 against t and of x2 against t are said to have a time shift of

π

4
. Specifically x1 is

ahead of, or ‘leads’ x2 by a time
π

4
s.

More generally, consider the following two sine waves of the same amplitude and frequency:

x1(t) = R sin ωt

x2(t) = R sin(ωt− α)
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Now x1

(
t− α

ω

)
= R sin

[
ω

(
t− α

ω

)]
= R sin(ωt− α) = x2(t)

so it is clear that the waves x1 and x2 are shifted in time by
α

ω
. Specifically x1 leads x2 by

α

ω
(if α > 0).

Task

Calculate the time shift between the waves

x1 = 3 cos(10πt)

x2 = 3 cos
(
10πt +

π

4

)
where the time t is in seconds.

Your solution

Answer
Note firstly that the waves have the same amplitude 3 and angular frequency 10π (corresponding

to a common period
2π

10π
=

1

5
s)

Now cos
(
10πt +

π

4

)
= cos

(
10π

(
t +

1

40

))
so x1

(
t +

1

40

)
= x2(t).

In other words the time shift is
1

40
s, the wave x2 leads the wave x1 by this amount. Alternatively

we could say that x1 lags x2 by
1

40
s.
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Key Point 20

The equations
x = R cos ωt x = R sin ωt

both represent waves of amplitude R and period
2π

ω
.

The time shift between these waves is
π

2ω
because cos

{
ω

(
t− π

2ω

)}
= sin ωt.

The phase difference between these waves is said to be
π

2
because cos

(
ωt− π

2

)
= sin ωt

Combining two wave equations
A situation that arises in some applications is the need to combine two trigonometric terms such as

A cos θ + B sin θ where A and B are constants.

For example this sort of situation might arise if we wish to combine two waves of the same frequency
but not necessarily the same amplitude or phase. In particular we wish to be able to deal with an
expression of the form

R1 cos ωt + R2 sin ωt

where the individual waves have, as we have seen, a time shift of
π

2ω
or a phase difference of

π

2
.

General Theory
Consider an expression A cos θ + B sin θ. We seek to transform this into the single form
C cos(θ−α) (or C sin(θ−α)), where C and α have to be determined. The problem is easily solved
with the aid of trigonometric identities.
We know that

C cos(θ − α) ≡ C(cos θ cos α + sin θ sin α)

Hence if A cos θ + B sin θ = C cos(θ − α) then

A cos θ + B sin θ = (C cos α) cos θ + (C sin α) sin θ

For this to be an identity (true for all values of θ) we must be able to equate the coefficients of cos θ
and sin θ on each side.
Hence

A = C cos α and B = C sin α (2)
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Task

By squaring and adding the Equations (2), obtain C in terms of A and B.

Your solution

Answer

A = C cos α and B = C sin α gives

A2 + B2 = C2 cos2 α + C2 sin2 α = C2(cos2 α + sin2 α) = C2

. .. C =
√

A2 + B2 (We take the positive square root.)

Task

By eliminating C from Equations (2) and using the result of the previous Task,
obtain α in terms of A and B.

Your solution

Answer

By division,
B

A
=

C sin α

C cos α
= tan α so α is obtained by solving tan α =

B

A
. However, care must be

taken to obtain the correct quadrant for α.

Key Point 21

If A cos θ + B sin θ = C cos(θ − α) then C =
√

A2 + B2 and tan α =
B

A
.

Note that the following cases arise for the location of α:

1. A > 0, B > 0 : 1st quadrant 3. A < 0, B < 0 : 3rd quadrant

2. A < 0, B > 0 : 2nd quadrant 4. A > 0, B < 0 : 4th quadrant
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In terms of waves, using Key Point 21 we have

R1 cos ωt + R2 sin ωt = R cos(ωt− α)

where R =
√

R2
1 + R2

2 and tan α =
R2

R1

.

The form R cos(ωt− α) is said to be the amplitude/phase form of the wave.

Example 5
Express in the form C cos(θ − α) each of the following:

(a) 3 cos θ + 3 sin θ

(b) −3 cos θ + 3 sin θ

(c) −3 cos θ − 3 sin θ

(d) 3 cos θ − 3 sin θ

Solution

In each case C =
√

A2 + B2 =
√

9 + 9 =
√

18

(a) tan α =
B

A
=

3

3
= 1 gives α = 45◦ (A and B are both positive so the first quadrant

is the correct one.) Hence 3 cos θ + 2 sin θ =
√

18 cos(θ − 45◦) =
√

18 cos
(
θ − π

4

)
(b) The angle α must be in the second quadrant as A = −3 < 0, B = +3 > 0. By

calculator : tan α = −1 gives α = −45◦ but this is in the 4th quadrant. Remembering
that tan α has period π or 180◦ we must therefore add 180◦ to the calculator value to
obtain the correct α value of 135◦. Hence

−3 cos θ + 3 sin θ =
√

18 cos(θ − 135◦)

(c) Here A = −3, B = −3 so α must be in the 3rd quadrant. tan α =
−3

−3
= 1 giving

α = 45◦ by calculator. Hence adding 180◦ to this tells us that

−3 cos θ − 3 sin θ =
√

18 cos(θ − 225◦)

(d) Here A = 3 B = −3 so α is in the 4th quadrant. tan α = −1 gives us (correctly)
α = −45◦ so

3 cos θ − 3 sin θ =
√

18 cos(θ + 45◦).

Note that in the amplitude/phase form the angle may be expressed in degrees or radians.
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Task

Write the wave form x = 3 cos ωt+4 sin ωt in amplitude/phase form. Express
the phase in radians to 3 d.p..

Your solution

Answer

We have x = R cos(ωt− α) where R =
√

32 + 42 = 5 and tan α = 4
3

from which, using the

calculator in radian mode, α = 0.927 radians. This is in the first quadrant
(
0 < α <

π

2

)
which is

correct since A = 3 and B = 4 are both positive. Hence x = 5 cos(ωt− 0.927).
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Exercises

1. Write down the amplitude and the period of y = 5
2
sin 2πt.

2. Write down the amplitude, frequency and time shift of

(a) y = 3 sin
(
2t− π

3

)
(b) y = 15 cos

(
5t− 3π

2

)
3. The current in an a.c. circuit is i(t) = 30 sin 120πt amp where t is measured in seconds.

What is the maximum current and at what times does it occur?

4. The depth y of water at the entrance to a small harbour at time t is y = a sin b
(
t− π

2

)
+k

where k is the average depth. If the tidal period is 12 hours, the depths at high tide and low
tide are 18 metres and 6 metres respectively, obtain a, b, k and sketch two cycles of the graph
of y.

5. The Fahrenheit temperature at a certain location over 1 complete day is modelled by

F (t) = 60 + 10 sin
π

12
(t− 8) 0 ≤ t ≤ 24

where t is in the time in hours after midnight.

(a) What are the temperatures at 8.00 am and 12.00 noon?

(b) At what time is the temperature 60◦F?

(c) Obtain the maximum and minimum temperatures and the times at which they occur.

6. In each of the following write down expressions for time-shifted sine and time-shifted cosine
functions that satisfy the given conditions:

(a) Amplitude 3, Period
2π

3
, Time shift

π

3
(b) Amplitude 0.7, Period 0.5, Time shift 4.

7. Write the a.c. current i = 3 cos 5t + 4 sin 5t in the form i = C cos(5π − α).

8. Show that if A cos ωt + B sin ωt = C sin(ωt + α) then

C =
√

A2 + B2, cos α =
B

C
, sin α =

A

C
.

9. Using Exercise 8 express the following in the amplitude/phase form C sin(ωt + α)

(a) y = −
√

3 sin 2t + cos 2t (b) y = cos 2t +
√

3 sin 2t

10. The motion of a weight on a spring is given by y =
2

3
cos 8t− 1

6
sin 8t.

Obtain C and α such that y = C sin(8t + α)

11. Show that for the two a.c. currents

i1 = sin
(
ωt +

π

3

)
and i2 = 3 cos

(
ωt− π

6

)
then i1 + i2 = 4 cos

(
ωt− π

6

)
.
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12. Show that the power P =
v2

R
in an electrical circuit where v = V0 cos

(
ωt + π

4

)
is

P =
V 2

0

2R
(1− sin 2ωt)

13. Show that the product of the two signals

f1(t) = A1 sin ωt f2(t) = A2 sin {ω(t + τ) + φ} is given by

f1(t)f2(t) =
A1A2

2
{cos(ωτ + φ)− cos(2ωt + ωτ + φ)}.

Answers

1. y =
5

2
sin 2πt has amplitude

5

2
. The period is

2π

2π
= 1.

Check: y(t + 1) =
5

2
sin(2π(t + 1)) =

5

2
sin(2πt + 2π) =

5

2
sin 2πt = y(t)

2. (a) Amplitude 3, Period
2π

2
= π. Writing y = 3 sin 2

(
t− π

6

)
we see that there is a time

shift of
π

6
in this wave compared with y = 3 sin 2t.

(b) Amplitude 15, Period
2π

5
. Clearly y = 15 cos 5

(
t− 3π

10

)
so there is a time shift of

3π

10
compared with y = 15 cos 5t.

3. Maximum current = 30 amps at a time t such that 120πt =
π

2
. i.e. t =

1

240
s.

This maximum will occur again at

(
1

240
+

n

60

)
s, n = 1, 2, 3, . . .

4. y = a sin
{

b
(
t− π

2

)}
+ h. The period is

2π

b
= 12 hr . .. b =

π

6
hr−1.

Also since ymax = a + k ymin = −a + k we have a + k = 18 − a + k = 6 so k = 12

m, a = 6 m. i.e. y = 6 sin
{π

6

(
t− π

2

)}
+ 12.

5. F (t) = 60 + 10 sin
π

12
(t− 8) 0 ≤ t < 24

(a) At t = 8 : temp = 60◦F. At t = 12: temp = 60 + 10 sin
π

3
= 68.7◦F

(b) F (t) = 60 when
π

12
(t− 8) = 0, π, 2π, . . . giving t− 8 = 0, 12, 24, . . . hours so

t = 8, 20, 32, . . . hours i.e. in 1 day at t = 8 (8.00 am) and t = 20 (8.00 pm)

(c) Maximum temperature is 70◦ F when
π

12
(t = 8) =

π

2
i.e. at t = 14 (2.00 pm).

Minimum temperature is 50◦F when
π

12
(t− 8) =

3π

2
i.e. at t = 26 (2.00 am).
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6. (a) y = 3 sin(3t−π) y = 3 cos(3t−π) (b) y = 0.7 sin(4πt−16π) y = 0.7 cos(4πt−
16π)

7. C =
√

32 + 42 = 5 tan α =
4

3
and α must be in the first quadrant (since A = 3, B = 4 are

both positive.) . .. α = tan−1 4

3
= 0.9273 rad . .. i = 5 cos(5t− 0.9273)

8. Since sin(ωt + α) = sin ωt cos α + cos ωt sin α then A = C sin α (coefficients of cos ωt)

B = C cos α (coefficients of sin ωt) from which C2 = A2 + B2, sin α =
A

C
, cos α =

B

C

9. (a) C =
√

3 + 1 = 2; cos α = −
√

3

2
sin α − 1

2
so α is in the second quadrant,

α =
5π

6
. .. y = 2 sin

(
2t +

5π

6

)
(b) y = 2 sin

(
2t +

π

6

)

10. C2 =
4

9
+

1

36
=

17

36
so C =

√
17

6
cos α =

−1
6√

17
6

= − 1√
17

sin α =
2
3√
17
6

=
4√
17

so α is in the second quadrant. α = 1.8158 radians.

11. Since sin x = cos
(
x− π

2

)
sin

(
ωt +

π

3

)
= cos

(
ωt +

π

3
− π

2

)
= cos

(
ωt− π

6

)
. .. i1 + i2 = cos

(
ωt− π

6

)
+ 3 cos

(
ωt− π

6

)
= 4 cos

(
ωt− π

6

)
12. v = V0 cos

(
ωt +

π

4

)
= V0

(
cos ωt cos π

4
− sin ωt sin π

4

)
= V0√

2
(cos ωt− sin ωt)

. .. v2 =
V 2

0

2
(cos2 ωt + sin2 ωt− 2 sin ωt cos ωt) =

V 2
0

2
(1− sin 2ωt)

and hence P =
v2

R
=

V 2
0

2R
(1− sin 2ωt.)

13. Since the required answer involves the difference of two cosine functions we use the identity

cos A− cos B = 2 sin

(
A + B

2

)
sin

(
B − A

2

)

Hence with
A + B

2
= ωt,

B − A

2
− ωt + ωτ + φ.

We find, by adding these equations B = 2ωt+ωτ+φ and by subtracting A = −ωτ−φ.

Hence sin(ωt) sin(ωt + ωτ + φ) =
1

2
{cos(ωτ + φ)− cos(2ωt + ωτ + φ)}.

(Recall that cos(−x) = cos x.) The required result then follows immediately.
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